Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 15, 2026
-
Teeth have been a prominent feature of most vertebrates for 400 million years, and the core regulatory network underlying embryonic tooth formation is deeply conserved. In frogs, however, odontogenesis is delayed, occurring instead during the postembryonic metamorphosis and resulting in teeth that are restricted to the upper jaw and palate. Developmental-genetic mechanisms that underlie tooth formation in frogs are poorly understood. We assessed if the genes underlying odontogenic competence are conserved in the late-forming teeth of frogs; if unique keratinized mouthparts, which function as an alternative feeding tool in anuran larvae, impede tooth induction; and if transient tooth rudiments form in the anuran mandible. We demonstrate that the induction of tooth development is conserved in the frog upper jaw, which displays odontogenic band expression patterns comparable to those of other vertebrates. There is, however, no evidence of tooth development initiating in the mandible. Adult teeth emerge before larval mouthparts degenerate, but their location may be spatially constrained by keratin. Gene expression patterns of keratinized mouthparts and teeth overlap. We hypothesize that the novel mouthparts of tadpoles, which we characterize as ectodermal appendages, may have originated by partially co-opting the developmental program that typically mediates development of true teeth.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 10, 2026
-
Anuran amphibians exhibit the greatest diversity of reproductive modes among tetrapod vertebrates. The Andamanese Charles Darwin's frog, Minervarya charlesdarwini, is the only species of the family Dicroglossidae that is known to naturally deposit eggs in water-filled cavities of tree holes or buttresses, where they then undergo exotrophic development. We describe the reproductive behavior in this species that involves a unique combination of traits: (1) Males produce complex advertisement calls comprising at least three different call types, in addition to a type of aggressive call. (2) Unpaired males exhibit agonistic interactions with each other and with mated pairs. (3) Mate selection, amplexus, and oviposition take place inside water-filled cavities. (4) During axillary amplexus, mating pairs synchronously switch between head-up and head-down positions above and below the water surface using both forward and backward movements. (5) At the time of egg laying, amplectant pairs are in an upside-down position on the cavity walls with their bodies completely outside the water. (6) Eggs are deposited over multiple bouts on the inner walls of the cavities and terrestrially above the water surface. Upside-down spawning in M. charlesdarwini is a unique trait among phytotelm-breeding terrestrial frogs. The combination of terrestrial oviposition sites in water-filled phytotelmata and the upside-down egg-laying posture is a novel report for the family Dicroglossidae and perhaps all anurans. This specialized behavior is also likely derived for a species that is embedded in a group of largely aquatic-breeding minervaryan frogs. Although M. charlesdarwini appears to be an obligate phytotelm breeder, individuals were often observed breeding inside cylindrical, water-filled plastic sapling bags in plant nurseries adjacent to fragmented forest patches, or in rain-filled discarded plastic, glass, or metal containers left as trash at the forest edge. Use of such unnatural breeding sites is likely a forced behavioral shift in response to rapidly changing forest landscapes associated with recent habitat loss and fragmentation. Our findings call for conservation attention to this habitat specialist, which, although locally abundant, is an endemic and threatened species of the Andaman Islands.more » « less
-
By using integrative taxonomy, we describe a new species of terrestrial foam-nesting frog of the genus Adenomera from white-sand forests of the Rio Negro Sustainable Development Reserve, Central Amazonia, Brazil. Within the A. andreae clade, the new species belongs to the A. simonstuarti complex where it is sister to the lineage from the lower Juruá River. The new species is assigned to the genus Adenomera by having adult SVL smaller than 34.1 mm, by its lack of fringing and webbing between toes and by the absence of spines on the thumb of adult males. It differs from other Adenomera by the following combination of characters: antebrachial tubercle absent; toe tips flattened or slightly flattened, with visible expansions; nearly solid, dark-coloured stripe on underside of forearm; single-note advertisement call; notes formed by 11–21 incomplete pulses; call duration varying between 100 and 199 ms; fundamental frequency 1,765–2,239 Hz; dominant frequency 3,448–4,349 Hz; and endotrophic tadpoles with spiracle present and labial teeth absent. Over the last decade, we have inventoried many permanent sampling modules in ombrophilous forests in the Manaus Region and in the Purus-Madeira interfluve, but the new species was found only in the white-sand forest from West Negro-Solimões Interfluve. Adenomera sp. nov. may be endemic to, or at least a specialist in, this environment.more » « less
-
Porro, Laura Beatriz (Ed.)Southern Amazonia is one of the less-explored regions by anuran taxonomists. We describe a small new species of snouted treefrog, genus Scinax, from this region, from a fluvial archipelago in the Juruena River, state of Mato Grosso, Brazil. The description is based on external morphology of adults and tadpoles, advertisement call and molecular data. The species is phylogenetically related to other snouted treefrogs of the Scinax cruentomma species group and shows the most southeastern distribution in Amazonia among its close relatives. It is distinguished from congeners mainly by its larger adult body size and bilobate vocal sac that reaches the level of the pectoral fold, a reddish-brown horizontal stripe on the iris, dark melanophores or blotches on the vocal sac and the throat of females, and the uniformly brown posterior portion of the thigh. The advertisement call comprises one pulsed note emitted at regular intervals, with a duration of 189–227 ms, 30–35 pulses/note and a dominant frequency of 2,250–2,344 Hz. The type locality is suffering several environmental impacts, including illegal mining, overfishing, unsustainable agriculture, uncontrolled logging and degradation associated with the construction of new hydroelectric dams. Further study of the biology and regional distribution of the new species is required to propose mitigation measures needed for its conservation.more » « less
-
Modularity (segmentation), homology and heterochrony were essential concepts embraced by Gavin de Beer in his studies of the development and evolution of the vertebrate skull. While his pioneering contributions have stood the test of time, our understanding of the biological processes that underlie each concept has evolved. We assess de Beer's initial training as an experimental embryologist; his switch to comparative and descriptive studies of skulls, jaws and middle ear ossicles; and his later research on the mammalian skull, including his approach to head segmentation. The role of cells of neural crest and mesodermal origin in skull development, and developmental, palaeontological and molecular evidence for the origin of middle ear ossicles in the evolutionary transition from reptiles to mammals are used to illustrate our current understanding of modularity, homology and heterochrony. This article is part of the theme issue ‘The mammalian skull: development, structure and function’.more » « less
-
Taxonomic uncertainty at the species level compromises our knowledge of biodiversity, conservation, and systematics. The impact of such uncertainty is heightened in megadiverse regions such as Amazonia due to high levels of cryptic diversity. We used integrative taxonomy based on newly collected topotypical specimens to redescribe the Amazonian nurse frog Allobates gasconi and infer its phylogenetic relationships. This species was described in 2002 based solely on morphology, but several characters crucial for the reliable diagnosis of species in Allobates were not considered. Our results show that A. gasconi sensu stricto is not a member of the A. caeruleodactylus clade as previously claimed, but is a member of the A. trilineatus clade. Allobates gasconi is readily distinguished from congeners by a combination of morphological and bio- acoustic characters; a revised diagnosis is provided. The type series of A. gasconi comprises more than one species, and we exclude a paratype from lower Juruá River. The species is restricted geographically to flooded environments in the middle and upper Juruá River in Brazil and in the Ucayali River in Peru. The initial misidentification, subsequent absence of topotypic molecular and acoustic data, and the poor preservation condition of the type series have contributed to taxonomic confusion since A. gasconi was first described. The descriptions of other species of Allobates published more than two decades ago were based mainly on gross morphology, and we recommend integrative taxonomic revisions to elucidate their systematics.more » « less
An official website of the United States government
